Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
IEEE Transactions on Signal and Information Processing over Networks ; 2022.
Article in English | Scopus | ID: covidwho-1752451

ABSTRACT

Graph Signal Processing (GSP) is an emerging research field that extends the concepts of digital signal processing to graphs. GSP has numerous applications in different areas such as sensor networks, machine learning, and image processing. The sampling and reconstruction of static graph signals have played a central role in GSP. However, many real-world graph signals are inherently time-varying and the smoothness of the temporal differences of such graph signals may be used as a prior assumption. In the current work, we assume that the temporal differences of graph signals are smooth, and we introduce a novel algorithm based on the extension of a Sobolev smoothness function for the reconstruction of time-varying graph signals from discrete samples. We explore some theoretical aspects of the convergence rate of our Time-varying Graph signal Reconstruction via Sobolev Smoothness (GraphTRSS) algorithm by studying the condition number of the Hessian associated with our optimization problem. Our algorithm has the advantage of converging faster than other methods that are based on Laplacian operators without requiring expensive eigenvalue decomposition or matrix inversions. The proposed GraphTRSS is evaluated on several datasets including two COVID-19 datasets and it has outperformed many existing state-of-the-art methods for time-varying graph signal reconstruction. GraphTRSS has also shown excellent performance on two environmental datasets for the recovery of particulate matter and sea surface temperature signals. IEEE

2.
30th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2020 ; 2020-September, 2020.
Article in English | Scopus | ID: covidwho-947721

ABSTRACT

The mathematical modeling of infectious diseases is a fundamental research field for the planning of strategies to contain outbreaks. The models associated with this field of study usually have exponential prior assumptions in the number of new cases, while the exploration of spatial data has been little analyzed in these models. In this paper, we model the number of new cases of the Coronavirus Disease 2019 (COVID-19) as a problem of reconstruction of time-varying graph signals. To this end, we proposed a new method based on the minimization of the Sobolev norm in graph signal processing. Our method outperforms state-of-the-art algorithms in two COVID-19 databases provided by Johns Hopkins University. In the same way, we prove the benefits of the convergence rate of the Sobolev reconstruction method by relying on the condition number of the Hessian associated with the underlying optimization problem of our method. © 2020 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL